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Sharp Elements in Effect Algebras
Zdenka Riecanowa!
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We show that if for an arbitrary pair of orthogonal sharp elements of an effect algebra
E its join exists and is sharp, then the &g of all sharp elements d is a subeffect
algebra ofE that is an orthomodular poset. Such effect algebras need not be sharply
dominating butS-dominating. Further, we show that in every nonproper effect algebra
E, Esis a subeffect algebra that is an orthomodular poset. Moreover, a general theorem
for Es is proved.

1. INTRODUCTION AND BASIC DEFINITIONS AND FACTS

An effect algebra is a partial algebra that generalizes the(sEX of positive
self-adjoint operators on Hilbert spakkthat are bounded above by the identity
operator. Effect algebras were introduced by Foulis and Bennett (1994).

Definition 1.1. A structure €; @, 0, 1) is called an effect-algebra if 0, 1 are two
distinguished elements ar@ is a partially defined binary operation @that
satisfies the following conditions for ary b, ¢ € E:

(Ei) bdoa=adbif a® bis defined,
(Eii) (adb)edc=aad (b c)if one side is defined,
(Eiii) foreverya € P thereexistsauniguee P suchthat & b = 1 (we put
a =b),
(Eiv) if 1 @ ais defined them = 0.

In every effect algebraK; @, 0, 1) the partial binary operatiop and the
partial order< can be defined by

a<candceca=»biff a@dbisdefinedandad b = c.
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If E with the defined partial order is a lattice thef; , 0, 1) is called dattice
effect algebraExamples of lattice effect algebras are, for example, direct product
or horizontal sum of an orthomodular lattice & algebra or horizontal sum of
two MV algebras.

Moreland and Gudder (1999) noted that there are two main types of effects,
the sharp effects that describe perfectly accurate yes—no measurements and the
unsharp effects that describe imprecise yes—no measurements. However, the set
of all sharp elements of an effect algelitaeed to be neither a subeffect algebra
of E nor an orthomodular lattice or poset (see Example 2.9). To remedy this
shortcoming Gudder (1998a) introduced special types of effect algebras called
sharply dominating an8-dominating.

Definition 1.2(Gudder, 1998a). LetH; @, 0, 1) be an effect algebra.

(i) An elementw € E is sharpif wAw' =0. PutEs={we E|wA
w’' = 0}
(i) Eissharply dominatingf everya € E is dominating by a smallest sharp
elementa € Es(i.e., ()a < &, (i) if a < b € Eg, thena < b).
(iii) Eis S-dominatindf it is sharply dominating and A w exists for every
ae E,wekEs

In Gudder (1998a) it has been shown that inSesiominating effect algebra
E, Es forms an orthomodular lattice. Moreove(H) is S dominating.

In Jerca and Rieanowd (1999), it has been shown that in a lattice effect
algebraE, Es is a subeffect algebra that is an orthomodular lattice.

In the present paper we show that in a nonproper effect algebis is a
subeffect algebra that is an orthomodular poset.

Definition 1.3. Aneffectalgebrak; @, 0, 1) is callegproperifthere area, b € E
suchthat < b’anda A bexists bua v bdoes not existil. Eis callednonproper
if Eis not proper.

We can obtairexamples of effect algebras that are nonproper and simultane-
ously not lattice-orderedor example:

(1) When we consider orthomodular posét €,”, 0, 1) that is not lattice
and say that fola,b € E,a@ b is defined iffa < b/, in which case
adb=avh.

(2) When we consider a direct product of two effect algeliiras E,, where
E; is associated to an orthomodular poset (not lattice, as described in (1))
andE; is a lattice effect algebra that is not an orthomodular lattice.

A lattice effect algebra that is not an orthomodular lattice and also rigihan
effect algebra1V algebra) is, for example, a direct product (or 0—1-pasting) of an
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orthomodular lattice and alV algebra that are considered as two effect algebras.
Obviously, this direct product (0—1-pasting) need not be a distributive lattice.

Definition 1.4 (Greechieet al.,, 1995). A subse@ of an effect algebraK; @,
0, 1) is called asubeffect algebraf E if

@) 0,1€Q,
(i) xe Q= x e Q,
(i) (x,ye Q,withx <y)= x®yeQ.

Evidently, subeffect algebi@ of an effect algebr& is an effect algebra in its
own right under the restriction @ to Q. Then the partial order oQ s a restriction
to Q of the partial order oft.

Recall, thata, b € E are calledorthogonalif a < b’. Obviously, in effect
algebrak, a ® bis defined iffa < b'. If for elementsa < b’ thea v b exists, then
a A b also exists and

adb=(@vVvb)y®(@Ab), (see Greechiet al.,, 1995)

On the other hand if fom < b’ thea A b exists thera v b need not exist (Example
2.14).

In Kdpka and Chovanec (1995, 1997), compatibility of two elements of an
effect algebrd& was introduced. We say thatb € E arecompatible(written as
a <> b)ifthere exisu,v,w € Psuchthah =u®w,b=vdwanduedw o v
is defined. IfE is a lattice effect algebra then< biff(avb)ca=bo (aAb).
A lattice effect algebra in which every padr, b € E is compatible is called a
Boolean effect algebréRieCanowd, 2000b) or arMV effect algebra (Foulis in
letter communications).

More Details on orthoposets, orthomodular posets, and orthomodular lattices
can be found in Kalmbach (1983) and for more details on effect algebras in Foulis
and Bennett (1994).

2. SHARP ELEMENTS IN EFFECT ALGEBRAS

Forthe remainder of this paper we assume tBat¥, O, 1) is an effect algebra
andEs = {w € E | w AW = 0} isthe set of all sharp elements ofora, b € E
we denotea Ag b (a Ag b), @ meet ofa andb in E (in Es). The meaning of
aveb(avgb)isdual

Theorem 2.1. Let(E; ®, 0, 1) be an effect algebra. Thensks an orthoposet
that satisfies the following condition for allyw, € Esg:
(w1 <wzand W Ag Wy = 0) = (W1 = Wy).

Proof: Assume thatv,, wo € Eswith wi < wp. Thenw; < wy, which implies
that there ared, w,v € E such thatw) =u@w,w, =w @ v, andudwev
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is defined. Sincav < w}, w,, the assumptionv; Ag w, = 0 givesw = 0, and
hencew] = u andw, = v. It follows thatw; & w; is defined, which implies that
Wy, < wj. This proves thatv; = w,. O

Corollary2.2. Letinan effectalgebréE; @, 0, 1)for every pairw, w, of sharp
elements, WAg W, exists in E and wAg W, € Es. Then

() Esis a subeffect algebra of,E
(i) Esis an orthomodular lattice.

Proof: (i) Let wy, wy € Es with wy <wj. Thenw; Ag W), € Es, andw; Ag
w, = 0. It follows thatw; @ wy = wy VE Wy = (W3 Ag W) € Es. SinceEs ob-
viously is an ortholattice, the last implies thag is a subeffect algebra & and,
by Theorem 2.1Es is an orthomodular lattice (see Kalmbach, 1983, p. 27).

Lemma 2.3. Let(E;®,0, 1) be an S-dominating effect algebra. Then for all
Wi, Wy € Eg, Wi Ve Wo and wy Ag Wo exist and they are sharp.

Proof: Let wy,w, € Es. Thenw; Ag W, exists inE and hence there exists
the smallest element € Es with wi Ag w, < w. It follows thatw < w; and
w < wy, which givesw < w; Ag wy < w. Thusw = w; Ag W, € Es. Moreover,
w1, wre Eg and hencev) Ag W, € Es, which givesw; Ve ws € Es. O

Corollary 2.4 (Gudder, 1998a,b) Let (E;®, 0, 1) be an S-dominating effect
algebra. Then

(i) Esis a subeffect algebra of E.
(i) Esis an orthomodular lattice.

Proposition 2.5. There are effect algebras that are not sharply dominating but
joins and meets of two arbitrary sharp elements exist and they are sharp.

Example 2.6. Let E={0,a,b,a®a bdb,adba, b, (ada), (beb),
(aab), 1} be an effectalgebrainwhich b, (a @ a), (b @ b), (a ® b)' are atoms
(hencea’,b’,ad a,b@ b, a® b are coatoms). Moreovea’ =a® (a® a) =
bo(@db)andt =a® (adb) =be (be b). Further for everx € E, x &
x'=1and 0® X = X.

Then

e Eis a proper effect algebra becawsa b = 0;a < b’ anda v b does not
exist.
e Es={adabobadb (@ada),(beb),(@adb),o0,1.
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¢ Joins and meets of arbitrary two sharp elements exig and they are
sharp.

e Egis asubeffect algebra & that is an orthomodular lattice.

e Esis not sharply dominatinggdominating); because for elememt E
there does not exist a smallest sharp element Es with a < w.

Note thatevery complete effect algeb(&; &, 0, 1) (i.e.,E is a complete
lattice) is S-dominating This follows from the fact that in every complete ef-
fect algebréE, Eg is a complete orthomodular lattice (see deahd Rieanon,
1999). Effect algebras that can be densely embedded into complete effect algebras
have been characterized in R&mod (2000a). Such effect algebras are nonproper
(RieCanowd, 2000a, Example 6.1). ThUu§E can be densely embedded into a com-
plete effect algebra, thendHs a subeffect algebra of E that is an orthomodular
poset(Theorem 2.10 of this paper).

Theorem 2.7. Let(E; &, 0, 1)be an effect algebra in which for allww, € Eg
with wy < w;, there exists wve wy and W, Ve Wy € Es. Then

(i) Esis asubeffect algebra of E.
(i) Esis an orthomodular poset.

Proof:

(I) If wi, wo € Eswithwy < W/2 thenw; Ag Wy = 0andw; @ Wo = Wy Vg
W, € Es. Since 0, 1e Es, andw € Egiff W € Eg, we conclude thaEs
is a subeffect algebra &.

(i) Assume thatvy, vo € Es with v4 < vy. It gives thatvy < (v5)’, which
implies thatv; Ve v, € Esand hence alsg, Ag v2 € Es. It follows that
V] Ags V2 = V] Ag Vo = 0, which by Theorem 2.1 giveg = v,. This
proves thatEs is an orthomodular poset (see Kalmbach, 1983, p. 27,
Theorem 11). O

Proposition 2.8. There are proper effect algebras in which there exjst x Es,
with x Ag Yy & Esand XAgg Y # X Ag Y.

Example 2.9. LetE ={0,a,b,a®a, adb,a, b, (@ada), (@adb), 1} be an
effect algebra in whicl, b, (a ® a)’, (a @ b)’ are atoms (henc®, b’,a® a,a ®

b are coatoms), and' =ad (a®a) =bd(adb)y andb =a@ (@adb).

Moreover, forevery € E, x @ X’ = 1 andx & 0 = x.

Obviously, Es is not a subeffect algebra d&; becauseb, (a @ b) € Es
buta’ =b@® (a® b) ¢ Es. Moreover, Es is not an orthomodular poset since
b <a@bandb # (a@ b), butt’ Ag, (a @ b) =0. Furthet’ ng (adb)=a#
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b’ Ags (a @ b). Finally, E is proper since < b’ anda Ag b = 0, buta ve b does
not exist.

Theorem 2.10. Let(E;®, 0, 1)be a nonproper effect algebra. Then

(i) Ifwy, wy € Esand wy Vg Wy exists in Ethenw Ve ws € Es.
(i) Ifwq, wy € Esand wy Ag Wy exists in Ethen w Ag Wy € Es.
(i) Esis a subeffect algebra of E.
(iv) Esis an orthomodular poset.

Proof:

(i) Letwy, w, € Esand letw; Vg wp exists inE. Thenw; Ag W5 ex-
ists inE. SinceE is nonproperw; & (W Ag W5) = W1 Ve (W) Ag
w5) andw, @ (Wy Ag W5) = Wo Ve (W] Ag W5). Assume thatl €
E with wi VE (W3 AE W)) < d andw, ve (W) Ag W5) < d. Then
w1, Wo < d © (W) Ag W5), and we obtain Wi Ve wa) @ (W) Ag
w5) < d. The last condition implies thad = 1, hence \{; Ve
(Wi AE W5) VE (W2 VE (W] AE W) = 1. Sincew; Vg Wy exists,
we conclude thatw; Ve wp) Vv (w3 Ag W5) = 1, which gives that
W1 VE W2 € Es.

(i) It follows by (i) and d’Morgan laws.
(iii), (iv) Let wy, wp € Es with wy < w5, SinceE is not proper anav; Ag
w, = 0 we conclude thaw; Vg w; exists inE. By (i), w; Vg Wy €
Es. By Theorem 2.7 Es is a subeffect algebra dE that is an
orthomodular poset. O

Corollary 2.11. A nonproper effect algebréE; &, 0, 1) is an orthomodular
poset iff every element of E is sharp.

Corollary 2.12 (Jerca and Rieanow, 1999) In every lattice effect algebra,E
Es is a subeffect algebra and a sublattice that is an orthomodular lattice.

Proposition 2.13. There are proper effect algebras in which; 5 a subeffect
algebra that is an orthomodular lattice (Boolean algebra).

Example 2.14. LetE = {0, a, b, @, bY, 1} be an effect algebrain whidi = a &
bb=ada=beéband 1=xd x', x =06 x for everyx € E. E is proper
becausa < b’ anda A b = 0 buta v b does not exist. Obviousl§s = {0, 1}.

For an effect algebrag; @, 0, 1), the seBeg = {y € E| < x for all x € E}
is called acompatibility centerof E and the seC(E) ={ze Elx=(XA2) Vv
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(x A Z) forall x € E}is called acenterof E. It was shown in Riedanow (1999a,b)
that in every effect algebria we haveC(E) € Bg N Es.

Theorem 2.15. Let(E;®, 0, 1) be a nonproper effect algebra in whichwg z
exists for all xe E, z € Es. Then GE) = B N Es.

Proof: Letze Be N Esandx € E. ThenzA Z = 0 andz < Xx. It follows that
therearel, v,w € Esuchthak =u@®w,z=w @ vandu ® w & visdefinedin
E.Lety € Ebesuchthat dw @& v &y =1, which givesz =u @ y. It follows
thatu < x AZ andw < XAz henceuAw =0. ThusSX=udw=uUVvWwW <
(XA Z)V(XAZ) <Xx. We conclude that for alk € E,x = (X A 2) vV (X A Z),
which prove thatz € C(E). SinceC(E) C Be N Es, we conclude thaC(E) =
BeNEs. O

A lattice effect algebraK; &, 0, 1) in which every two elements are com-
patible is called a Boolean effect algebra (€ird\d, 2000b) or alsd1V effect
algebra (Foulis in letter communications). For a Boolean effect algetrahave
E = B and thusC(E) = Es, in view of Theorem 2.15—but not conversely. For
example, for the proper effect algeldfa= {0, a, b, &, ', 1} in Example 2.14 we
haveE = Bg andC(E) = Es = {0, 1}.
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