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We show that if for an arbitrary pair of orthogonal sharp elements of an effect algebra
E its join exists and is sharp, then the setES of all sharp elements ofE is a subeffect
algebra ofE that is an orthomodular poset. Such effect algebras need not be sharply
dominating butS-dominating. Further, we show that in every nonproper effect algebra
E, ES is a subeffect algebra that is an orthomodular poset. Moreover, a general theorem
for ES is proved.

1. INTRODUCTION AND BASIC DEFINITIONS AND FACTS

An effect algebra is a partial algebra that generalizes the setε(H ) of positive
self-adjoint operators on Hilbert spaceH that are bounded above by the identity
operator. Effect algebras were introduced by Foulis and Bennett (1994).

Definition 1.1. A structure (E;⊕, 0, 1) is called an effect-algebra if 0, 1 are two
distinguished elements and⊕ is a partially defined binary operation onE that
satisfies the following conditions for anya, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,
(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for everya ∈ P there exists a uniqueb ∈ P such thata⊕ b = 1 (we put
a′ = b),

(Eiv) if 1 ⊕ a is defined thena = 0.

In every effect algebra (E;⊕, 0, 1) the partial binary operationª and the
partial order≤ can be defined by

a ≤ c andcª a = b iff a⊕ b is defined anda⊕ b = c.
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If E with the defined partial order is a lattice then (E;⊕, 0, 1) is called alattice
effect algebra. Examples of lattice effect algebras are, for example, direct product
or horizontal sum of an orthomodular lattice andMV algebra or horizontal sum of
two MV algebras.

Moreland and Gudder (1999) noted that there are two main types of effects,
the sharp effects that describe perfectly accurate yes–no measurements and the
unsharp effects that describe imprecise yes–no measurements. However, the set
of all sharp elements of an effect algebraE need to be neither a subeffect algebra
of E nor an orthomodular lattice or poset (see Example 2.9). To remedy this
shortcoming Gudder (1998a) introduced special types of effect algebras called
sharply dominating andS-dominating.

Definition 1.2(Gudder, 1998a). Let (E;⊕, 0, 1) be an effect algebra.

(i) An elementw ∈ E is sharp if w ∧ w′ = 0. Put ES = {w ∈ E | w ∧
w′ = 0}.

(ii) E issharply dominatingif everya ∈ E is dominating by a smallest sharp
elementâ ∈ ES (i.e., (i) a ≤ â, (ii) if a ≤ b ∈ ES, thenâ ≤ b).

(iii) E is S-dominatingif it is sharply dominating anda ∧ w exists for every
a ∈ E, w ∈ ES.

In Gudder (1998a) it has been shown that in anS-dominating effect algebra
E, ES forms an orthomodular lattice. Moreover,ε(H ) is S-dominating.

In Jenča and Rieˇcanová (1999), it has been shown that in a lattice effect
algebraE, ES is a subeffect algebra that is an orthomodular lattice.

In the present paper we show that in a nonproper effect algebraE, ES is a
subeffect algebra that is an orthomodular poset.

Definition 1.3. An effect algebra (E;⊕, 0, 1) is calledproperif there area, b ∈ E
such thata ≤ b′ anda ∧ bexists buta ∨ bdoes not exist inE.E is callednonproper
if E is not proper.

We can obtainexamples of effect algebras that are nonproper and simultane-
ously not lattice-ordered, for example:

(1) When we consider orthomodular poset (E;≤,′ , 0, 1) that is not lattice
and say that fora, b ∈ E, a⊕ b is defined iff a ≤ b′, in which case
a⊕ b = a ∨ b.

(2) When we consider a direct product of two effect algebrasE1× E2, where
E1 is associated to an orthomodular poset (not lattice, as described in (1))
andE2 is a lattice effect algebra that is not an orthomodular lattice.

A lattice effect algebra that is not an orthomodular lattice and also not anMV
effect algebra (MV algebra) is, for example, a direct product (or 0–1-pasting) of an
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orthomodular lattice and anMV algebra that are considered as two effect algebras.
Obviously, this direct product (0–1-pasting) need not be a distributive lattice.

Definition 1.4 (Greechieet al., 1995). A subsetQ of an effect algebra (E;⊕,
0, 1) is called asubeffect algebraof E if

(i) 0, 1 ∈ Q,
(ii) x ∈ Q =⇒ x′ ∈ Q,

(iii) ( x, y ∈ Q, with x ≤ y′) =⇒ x ⊕ y ∈ Q.

Evidently, subeffect algebraQ of an effect algebraE is an effect algebra in its
own right under the restriction of⊕ toQ. Then the partial order onQ is a restriction
to Q of the partial order onE.

Recall, thata, b ∈ E are calledorthogonal if a ≤ b′. Obviously, in effect
algebraE, a⊕ b is defined iffa ≤ b′. If for elementsa ≤ b′ thea ∨ b exists, then
a ∧ b also exists and

a⊕ b = (a ∨ b)⊕ (a ∧ b), (see Greechieet al., 1995)

On the other hand if fora ≤ b′ thea ∧ b exists thena ∨ b need not exist (Example
2.14).

In Kôpka and Chovanec (1995, 1997), compatibility of two elements of an
effect algebraE was introduced. We say thata, b ∈ E arecompatible(written as
a↔ b) if there existu, v, w ∈ P such thata = u⊕ w, b = v ⊕ w andu⊕ w ⊕ v
is defined. IfE is a lattice effect algebra thena↔ b iff ( a ∨ b)ª a = bª (a ∧ b).
A lattice effect algebra in which every paira, b ∈ E is compatible is called a
Boolean effect algebra(Riečanová, 2000b) or anMV effect algebra (Foulis in
letter communications).

More Details on orthoposets, orthomodular posets, and orthomodular lattices
can be found in Kalmbach (1983) and for more details on effect algebras in Foulis
and Bennett (1994).

2. SHARP ELEMENTS IN EFFECT ALGEBRAS

For the remainder of this paper we assume that (E;⊕, 0, 1) is an effect algebra
andES = {w ∈ E | w ∧ w′ = 0} is the set of all sharp elements of E. Fora, b ∈ E
we denotea ∧E b (a ∧ES b), a meet ofa and b in E (in ES). The meaning of
a ∨E b (a ∨ES b) is dual.

Theorem 2.1. Let (E;⊕, 0, 1) be an effect algebra. Then ES is an orthoposet
that satisfies the following condition for all w1, w2 ∈ ES:

(w1 ≤ w2 and w′1 ∧E w2 = 0)=⇒ (w1 = w2).

Proof: Assume thatw1, w2 ∈ ES with w1 ≤ w2. Thenw′1↔ w2, which implies
that there areu, w, v ∈ E such thatw′1 = u⊕ w, w2 = w ⊕ v, andu⊕ w ⊕ v
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is defined. Sincew ≤ w′1, w2, the assumptionw′1 ∧E w2 = 0 givesw = 0, and
hencew′1 = u andw2 = v. It follows thatw′1⊕ w2 is defined, which implies that
w2 ≤ w1. This proves thatw1 = w2. ¤

Corollary 2.2. Let in an effect algebra(E;⊕, 0, 1)for every pair w1, w2 of sharp
elements, w1 ∧E w2 exists in E and w1 ∧E w2 ∈ ES. Then

(i) ES is a subeffect algebra of E,
(ii) ES is an orthomodular lattice.

Proof: (i) Let w1, w2 ∈ ES with w1 ≤ w′2. Thenw′1 ∧E w′2 ∈ ES, andw1 ∧E

w2 = 0. It follows thatw1⊕ w2 = w1 ∨E w2 = (w′1 ∧E w′2)′ ∈ ES. SinceES ob-
viously is an ortholattice, the last implies thatES is a subeffect algebra ofE and,
by Theorem 2.1,ES is an orthomodular lattice (see Kalmbach, 1983, p. 27).¤

Lemma 2.3. Let (E;⊕, 0, 1) be an S-dominating effect algebra. Then for all
w1, w2 ∈ ES, w1 ∨E w2 and w1 ∧E w2 exist and they are sharp.

Proof: Let w1, w2 ∈ ES. Then w1 ∧E w2 exists in E and hence there exists
the smallest elementw ∈ ES with w1 ∧E w2 ≤ w. It follows that w ≤ w1 and
w ≤ w2, which givesw ≤ w1 ∧E w2 ≤ w. Thusw = w1 ∧E w2 ∈ ES. Moreover,
w′1, w′2∈ ES and hencew′1 ∧E w′2 ∈ ES, which givesw1 ∨E w2 ∈ ES. ¤

Corollary 2.4 (Gudder, 1998a,b). Let (E;⊕, 0, 1) be an S-dominating effect
algebra. Then

(i) ES is a subeffect algebra of E.
(ii) ES is an orthomodular lattice.

Proposition 2.5. There are effect algebras that are not sharply dominating but
joins and meets of two arbitrary sharp elements exist and they are sharp.

Example 2.6. Let E={0, a, b, a⊕a, b⊕ b, a⊕ b, a′, b′, (a⊕a)′, (b⊕ b)′,
(a⊕b)′, 1}be an effect algebra in whicha, b, (a⊕ a)′, (b⊕ b)′, (a⊕ b)′ are atoms
(hencea′, b′, a⊕ a, b⊕ b, a⊕ b are coatoms). Moreover,a′ = a⊕ (a⊕ a)′ =
b⊕ (a⊕ b)′ andb′ = a⊕ (a⊕ b)′ = b⊕ (b⊕ b)′. Further for everyx ∈ E, x ⊕
x′ = 1 and 0⊕ x = x.
Then

• E is a proper effect algebra becausea ∧ b = 0; a ≤ b′ anda ∨ b does not
exist.
• ES = {a⊕ a, b⊕ b, a⊕ b, (a⊕ a)′, (b⊕ b)′, (a⊕ b)′, 0, 1}.
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• Joins and meets of arbitrary two sharp elements exist inE and they are
sharp.
• ES is a subeffect algebra ofE that is an orthomodular lattice.
• ES is not sharply dominating (S-dominating); because for elementa ∈ E

there does not exist a smallest sharp elementw ∈ ES with a ≤ w.

Note thatevery complete effect algebra(E;⊕, 0, 1) (i.e.,E is a complete
lattice) is S-dominating. This follows from the fact that in every complete ef-
fect algebraE, ES is a complete orthomodular lattice (see Jenˇca and Rieˇcanová,
1999). Effect algebras that can be densely embedded into complete effect algebras
have been characterized in Rieˇcanová (2000a). Such effect algebras are nonproper
(Riečanová, 2000a, Example 6.1). Thus:If E can be densely embedded into a com-
plete effect algebra, then ES is a subeffect algebra of E that is an orthomodular
poset(Theorem 2.10 of this paper).

Theorem 2.7. Let (E;⊕, 0, 1)be an effect algebra in which for all w1, w2 ∈ ES

with w1 ≤ w′2 there exists w1 ∨E w2 and w1 ∨E w2 ∈ ES. Then

(i) ES is a subeffect algebra of E.
(ii) ES is an orthomodular poset.

Proof:

(i) If w1, w2 ∈ ES with w1 ≤ w′2 thenw1 ∧E w2 = 0 andw1⊕ w2 = w1 ∨E

w2 ∈ ES. Since 0, 1∈ ES, andw ∈ ES iff w′ ∈ ES, we conclude thatES

is a subeffect algebra ofE.
(ii) Assume thatv1, v2 ∈ ES with v1 ≤ v2. It gives thatv1 ≤ (v′2)′, which

implies thatv1 ∨E v′2 ∈ ES and hence alsov′1 ∧E v2 ∈ ES. It follows that
v′1 ∧ES v2 = v′1 ∧E v2 = 0, which by Theorem 2.1 givesv1 = v2. This
proves thatES is an orthomodular poset (see Kalmbach, 1983, p. 27,
Theorem 11). ¤

Proposition 2.8. There are proper effect algebras in which there exist x, y ∈ ES,
with x∧E y 6∈ ES and x∧ES y 6= x ∧E y.

Example 2.9. Let E = {0, a, b, a⊕ a, a⊕ b, a′, b′, (a⊕ a)′, (a⊕ b)′, 1} be an
effect algebra in whicha, b, (a⊕ a)′, (a⊕ b)′ are atoms (hencea′, b′, a⊕ a, a⊕
b are coatoms), anda′ = a⊕ (a⊕ a)′ = b⊕ (a⊕ b)′ and b′ = a⊕ (a⊕ b)′.
Moreover, for everyx ∈ E, x ⊕ x′ = 1 andx ⊕ 0= x.

Obviously, ES is not a subeffect algebra ofE; becauseb, (a⊕ b)′ ∈ ES

but a′ = b⊕ (a⊕ b)′ 6∈ ES. Moreover, ES is not an orthomodular poset since
b ≤ a⊕ b andb 6= (a⊕ b), butb′ ∧ES (a⊕ b) = 0. Furtherb′ ∧E (a⊕ b) = a 6=
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b′ ∧ES (a⊕ b). Finally,E is proper sincea ≤ b′ anda ∧E b = 0, buta ∨E b does
not exist.

Theorem 2.10. Let (E;⊕, 0, 1)be a nonproper effect algebra. Then

(i) If w1, w2 ∈ ES and w1 ∨E w2 exists in E, then w1 ∨E w2 ∈ ES.
(ii) If w1, w2 ∈ ES and w1 ∧E w2 exists in E, then w1 ∧E w2 ∈ ES.

(iii) ES is a subeffect algebra of E.
(iv) ES is an orthomodular poset.

Proof:

(i) Let w1, w2 ∈ ES and letw1 ∨E w2 exists inE. Thenw′1 ∧E w′2 ex-
ists inE. SinceE is nonproper,w1⊕ (w′1 ∧E w′2) = w1 ∨E (w′1 ∧E

w′2) andw2⊕ (w′1 ∧E w′2) = w2 ∨E (w′1 ∧E w′2). Assume thatd ∈
E with w1 ∨E (w′1 ∧E w′2) ≤ d andw2 ∨E (w′1 ∧E w′2) ≤ d. Then
w1, w2 ≤ d ª (w′1 ∧E w′2), and we obtain (w1 ∨E w2)⊕ (w′1 ∧E

w′2) ≤ d. The last condition implies thatd = 1, hence (w1 ∨E

(w′1 ∧E w′2) ∨E (w2 ∨E (w′1 ∧E w′2)′ = 1. Sincew1 ∨E w2 exists,
we conclude that (w1 ∨E w2) ∨ (w′1 ∧E w′2) = 1, which gives that
w1 ∨E w2 ∈ ES.

(ii) It follows by (i) and d’Morgan laws.
(iii), (iv) Let w1, w2 ∈ ES with w1 ≤ w′2. SinceE is not proper andw1 ∧E

w2 = 0 we conclude thatw1 ∨E w2 exists inE. By (i), w1 ∨E w2 ∈
ES. By Theorem 2.7,ES is a subeffect algebra ofE that is an
orthomodular poset. ¤

Corollary 2.11. A nonproper effect algebra(E;⊕, 0, 1) is an orthomodular
poset iff every element of E is sharp.

Corollary 2.12 (Jenča and Rieˇcanová, 1999). In every lattice effect algebra E,
ES is a subeffect algebra and a sublattice that is an orthomodular lattice.

Proposition 2.13. There are proper effect algebras in which ES is a subeffect
algebra that is an orthomodular lattice (Boolean algebra).

Example 2.14. Let E = {0, a, b, a′, b′, 1} be an effect algebra in whicha′ = a⊕
b, b′ = a⊕ a = b⊕ b and 1= x ⊕ x′, x = 0⊕ x for everyx ∈ E. E is proper
becausea ≤ b′ anda ∧ b = 0 buta ∨ b does not exist. ObviouslyES = {0, 1}.

For an effect algebra (E;⊕, 0, 1), the setBE = {y ∈ E| ↔ x for all x ∈ E}
is called acompatibility centerof E and the setC(E) = {z ∈ E|x = (x ∧ z) ∨
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(x ∧ z′) for all x ∈ E} is called acenterof E. It was shown in Rieˇcanová (1999a,b)
that in every effect algebraE we haveC(E) ⊆ BE ∩ ES.

Theorem 2.15. Let (E;⊕, 0, 1)be a nonproper effect algebra in which x∧E z
exists for all x∈ E, z ∈ ES. Then C(E) = BE ∩ ES.

Proof: Let z ∈ BE ∩ ES andx ∈ E. Thenz∧ z′ = 0 andz↔ x. It follows that
there areu, v, w ∈ E such thatx = u⊕ w, z= w ⊕ v andu⊕ w ⊕ v is defined in
E. Let y ∈ E be such thatu⊕ w ⊕ v ⊕ y = 1, which givesz′ = u⊕ y. It follows
that u ≤ x ∧ z′ and w ≤ x ∧ z henceu ∧ w = 0. Thusx = u⊕ w = u ∨ w ≤
(x ∧ z′) ∨ (x ∧ z) ≤ x. We conclude that for allx ∈ E, x = (x ∧ z) ∨ (x ∧ z′),
which prove thatz ∈ C(E). SinceC(E) ⊆ BE ∩ ES, we conclude thatC(E) =
BE ∩ ES. ¤

A lattice effect algebra (E;⊕, 0, 1) in which every two elements are com-
patible is called a Boolean effect algebra (Rieˇcanová, 2000b) or alsoMV effect
algebra (Foulis in letter communications). For a Boolean effect algebraE we have
E = BE and thusC(E) = ES, in view of Theorem 2.15—but not conversely. For
example, for the proper effect algebraE = {0, a, b, a′, b′, 1} in Example 2.14 we
haveE = BE andC(E) = ES = {0, 1}.
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